ICAEW KNOW-HOW

BUSINESS AND MANAGEMENT FACULTY

The net present value of happiness

23 SEPTEMBER 2020
PRESENTED BY ANDREW
SALKELD

Business & Management 20 minute webinar: The net present value of happiness

Andrew Salkeld

Life by Numbers

Waiting for the weekend?

...when this project is done...

...when I get that promotion...

...when I change jobs...

Net Present Value

$$NPV = \sum_{t=1}^{n} \frac{R_t}{(1+i)^t}$$

- R_t Net cash inflow minus outflow during period t
- i Discount rate or return of alternative investment during period t
- t Total number of time periods

Net Present Value of Happiness?

$$NPV = \sum_{t=1}^{n} \frac{H_t}{(1+i)^t}$$

 H_t Net happiness during period t

does this exist?

- i Alternative happiness rate during period t
- t Total number of time periods

Net Present Value of Happiness

...that I could die...

A model is only ever as good as the inputs!

...didn't account for risk...

...didn't account for chance...

...or getting hit by a bus...

Sometimes a model can be overly complex!

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV - rS \frac{\partial V}{\partial S}$$

don't worry, I'm not pivoting to talk about Black-Scholes!

Expected Net Present Value

(Risk Adjusted Net Present Value)

$$E[NPV] = \sum_{t=1}^{n} p \frac{R_t}{(1+i)^t}$$

- R_t Net cash inflow minus outflow during period t
- i Discount rate or return of alternative investment during period t
- t Total number of time periods
- p Probability of scenario R_t at Discount rate i during time period t

Expected Net Present Value of Happiness

$$E[NPV] = \sum_{t=1}^{n} \frac{\text{changes everything!}}{(1+i)^{t}}$$

- H_t Net happiness during period t
- i Alternative happiness rate during period t
- t Total number of time periods
- ${m {\cal P}}$ Probability of happiness H_t at Happiness rate i during time period t

Expected Net Present Value of Happiness

All you do by delaying your happiness is add risk!

You could end up never achieving that happiness!

Find your happiness in the present!

Business & Management

THANK YOU FOR ATTENDING

Contact the Business & Management Faculty icaew.com/bam

Upcoming BAM webinars and events icaew.com/bamevents

